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Current Status of AI-related Standardization in the Khronos Group

Abstract

This session introduces the ongoing efforts to standardise 

machine learning acceleration within Khronos. As machine 

learning technologies evolve, the industry faces challenges 

such as fragmented solutions, duplicated development effort, 

and slow adoption of new hardware features. The presentation 

sets the stage for a discussion on how open standards can 

help address these issues, enabling more efficient, 

interoperable, and future-proof deployment of machine learning 

across diverse platforms.

This presentation examines the current status and future direction of AI-related standardisation within Khronos. 

Physical AI
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Non-profit Standards Consortium 

creating open, royalty-free 

standards

Focused on acceleration APIs 

and file formats for 3D, XR, AI, 

vision, and parallel compute 

Membership open to any 

organization

Founded in 2000

~ 150 Members |~ 40% US, 30% Europe, 30% Asia

ISO/IEC JTC 1 PAS Submitter

Khronos Connects Software to Silicon
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The complex ML landscape of compiler, 

runtimes and libraries results from the 

search for acceleration flexibility, 

customization, and optimization

Proprietary

Compute

APIs

Proprietary

Neural 

Network

Acceleration

APIsQNN

ARM NN SDK

Machine Learning Acceleration Complexity
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Khronos interviewed key decision-makers 1-1 across the entire ML stack
AI Model Experts | Platforms | Hardware Vendors | AI Compilers | Tools Vendors | Standards

Goal was to understand

1) Real-world ML acceleration pain points facing hardware and software vendors 

2) How can standards bodies, like Khronos, help reduce ML ecosystem complexity

Key result - one common problem

Launching AI products & features requires 

too much manual expert work!

Up to 85% of ML deployment efforts is the manual expert work 

needed to develop and optimize backend ML acceleration

Khronos ML Market Research

https://creativecommons.org/licenses/by/4.0/
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Multiplied porting and support costs

IHVs must integrate with every framework 

# Frameworks × # Accelerators × # IHVs

ISVs must support multiple backends

• Increased software complexity and support burden

• Slow adoption of new hardware features

• Fragmented platform support

Lack of Performance Portability 
Speed-of-light performance requires expert 

interventions for each backend

• Model porting & optimization 

• Custom operators

• Graph rewriting & scheduling 

CompilersCompilersCompilers

ML

Frameworks
ML

Frameworks
ML

Frameworks

CompilersCompilersRuntimes

CompilersCompilersLibraries

CompilersCompilersAcceleration 

APIs

CompilersCompilersAcceleration 

SDKS

Multiple compiler, runtimes 

and libraries seeking 

optimal acceleration
Multiple acceleration 

backends for platform and 

vendor differentiationMany frameworks and 

models to enable diversity 

of platforms and use cases

ML acceleration pain points 

are slowing innovation! 

• Expertise bottleneck

• Duplicated effort

= Slow adoption of new acceleration 

opportunities …

… end users can’t run the models they 

need on the hardware they want! 

ML Ecosystem Acceleration Inefficiency
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● Open cross-vendor APIs benefit software AND hardware vendors
- Software vendors have reduced costs and broder market reach

- Hardware vendors have access to a broader software ecosystem

- Robust API design and support with input and investment from multiple companies

● BUT acceleration standards must be designed with care
- Not too soon - only standardize interoperability that is proven and stable

- Extensible to accommodate technology advances

Software compiler/library/runtimeSoftware compiler/library/runtime

Hardware 

Accelerator

Hardware 

Accelerator

Hardware 

Accelerator

Proprietary API Proprietary APIProprietary API

Hardware 

Accelerator

Hardware 

Accelerator

Hardware 

Accelerator

Software compiler/library/runtime

Open, cross-vendor API

Software compilers/libraries/runtimes

Custom API per hardware vendor 

increases software porting and support costs 

Cross-vendor API streamlines software 

development and widens market reach 

Can Open Interoperability Standards Help?
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An effective cross-platform standard for ML acceleration 

could reduce the number of needed backends

Can we create cross-platform standards that address the 

operator, graph-in-IR and NPU deployment pain points?

CompilersCompilersCompilers

ML

Frameworks
ML

Frameworks
ML

Frameworks

CompilersCompilersRuntimes

CompilersCompilersLibraries

CompilersCompilersAcceleration 

APIs

CompilersCompilersAcceleration 

SDKS

Sophisticated lowering ML compilers are the most promising route to performance portability 

- but there are two backend issues that need solving

1. Many compiler stacks define custom operators to try to gain access to efficient operations
BUT 

Resulting operator proliferation means that overwhelmed hardware vendors 

can’t deploy effective operator acceleration fast enough

2. Open-Standard Intermediate Representations (IRs) don’t carry operator (graph) information
WHICH MEANS

• Device driver optimization opportunities are limited

• Can’t lower GPU-centric IR code to NPUs

Hardware Vendors Could Do More for ML?
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‘Default’ ML acceleration on GPUs is to run compute shaders
ML Workloads dominated by Matrix-Matrix Multiply,  Matrix Vector Multiply and 

Convolutions (which can also be expressed as matrix multiplies)

Performance 

Bottlenecks

Memory Capacity

Memory size

Bandwidth per memory pin

Quantization

Reduce bit precision per weight

ML Data Types

Int8 | Int16

Float8 | float16

2-4x Less Memory Load

Compute Throughput

Instructions per clock are limited

Max clock is limited

Parallel Operations

Do more work per instruction

Cooperative Matrix Operations

Thread group cooperates on highly 

parallel matrix multiplies

4x+ Speed Increase

Solutions

Extensions 

Vulkan (and OpenCL) are continuing to expand data types 

and intrinsic operations to speed ML operations 

ML Acceleration with Compute Shaders 
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• OpenCL has been traditionally widely used in mobile and embedded markets

• Vulkan is becoming increasingly used across all markets

General Frameworks Type Khronos APIs

Tinygrad Framework

Intel OpenVINO Runtime

Apache TVM Compiler

Meta Glow Compiler

SYCL / DPC++ / OneAPI Compiler

GGML Runtime

IREE Compiler/Runtime

AI Inc. Ailia SDK SDK

Mobile / Embedded Frameworks Type Khronos APIs

Cadence Xtensa Neural Network Compiler (XNNC) Compiler 

CEVA Deep Neural Network compiler (CDNN) Compiler

Synopsys MetaWare EV Runtime

VeriSilicon Acuity Runtime

Texas Instruments DL Library (TIDL) Library

Arm Compute Library Library

Xilinx Vitis AI SDK

QNN: Qualcomm Neural Network SDK SDK

Google LiteRT Runtime

Alibaba MNN Runtime

Xiaomi Mace Runtime

Baidu Paddle Paddle Lite Runtime

ExecuTorch Compiler/Runtime

Note: frameworks may have additional supported backends 

ML Adoption of Khronos Open Standards
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• SPIR-V is the IR for Vulkan, OpenCL and SYCL
- Designed to support graphics and compute use cases

- Simple binary format, easy and fast to parse and analyze

- Decouples compute and shading language from the API

• Industry support is widening beyond Khronos APIs
- Official LLVM backend since LLVM 20

- MLIR dialect available

- Adopted for DirectX Shader Model 7

• Easily extendible to add new features
- Expose innovative features in your hardware

- Enable the industry to widely adopt them

• Enables forward compatibility 
- New tools generate bytecode readable by older drivers

- Compiler update does need a driver update

• Extensive SPIR-V open-source tooling 
- Read, write, validate and transform SPIR-V

Shader Model 7

MLIR

Slang

LLVM

DXC

SPIR-V

Cross

HLSL GLSL

glslang

Note: there are SPIR-V 

dialects with minor 

differences for different APIs

Khronos SPIR-V Intermediate Representation 
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API Driver

• Arm vendor extensions add graphs and tensors to SPIR-V

- Arm’s TOSA is the initial operator set

- Extensible to any other operator set

- But no custom kernel support

• Complete neural network is sent to the driver as one SPIR-V blob

- Driver can run a full graph optimizer on the network to optimize execution

• This solves multiple identified pain points!

Offload operators to 

special hardware, e.g. 

NPUs

ML Framework/Compiler

Drivers have full graph 

information for 

optimization
SPIR-V with Graphs 

NPUsGPUs

Drivers have the most detailed architectural 

knowledge of available  processor resources

Choose optimal Kernels 
Choose optimal tiling for 

best cache efficiency

Adding Graphs to SPIR-V

https://creativecommons.org/licenses/by/4.0/
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• How to handle custom operators in the SPIR-V graph?
- Custom operators usually are defined through compute kernels

- The Arm SPIR-V graph extension does NOT support compute kernels as graph nodes

• We are seeking industry feedback - what are your custom operator requirements?
- Our research says 20-30% of typical pipelines are custom operators

- Custom nodes distributed equally in the graph?

- Just used for preprocessing and postprocessing?

- Large single big operator in the middle of a graph?

• If it’s preprocessing or post processing the current graph extension works fine

- Unless data transfer or data layout conversion is required

• For everything else
- Do you consider synchronization as problem?

- Do you think it’s valuable to have compute kernels in the graph?

- What kind of programming model do you expect?

Reducing Need for Custom Operators

https://creativecommons.org/licenses/by/4.0/
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• NNEF is a Khronos open standard file format for describing neural networks
- Two key aspects: neural structure and network data

- Primary focus today is neural structure

• NNEF 2.0 defines the SkriptND domain specific language
- Shape inference

- Runtime computation of tensor operators called “primitives”

- Compounds of primitives - and other compounds

- Control flow constructs (branching / looping at the graph level) for dynamic models

- Full neural network graphs consisting of primitives and compounds

• Networks defined with SkriptND are fully self-contained
- New operators can be defined by exporter tools or the developer as needed

Compound

Compound Compound

PrimitivePrimitivePrimitivePrimitivePrimitivePrimitivePrimitivePrimitive

Compound

CompoundGraph

SkriptND primitive and 

compound operators

NNEF 2.0 and SkriptND

https://creativecommons.org/licenses/by/4.0/
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• SkriptND enables flexible graph construction
- "Mixing and matching" optimization levels

• Handling Tensor Primitives (e.g., conv, add)
- Optimized Path: Map the primitive to a specialized hardware unit or compute kernel

- Fallback Path: Directly compile the provided SkriptND definition into vanilla compute shaders

• Handling Compounds (e.g., conv_bn_relu)
- Optimized Path: Support the compound directly as a single "fused" operation

- Fallback Path: "Lower" the compound, breaking it down into its constituent primitives

• Implementers can choose what Primitives and Compounds to optimize 
- Using custom hardware or compute kernels 

- The graph will always execute even if everything  is compiled into standard computer shaders 

• Guaranteed Forward Compatibility
- New primitives always have a compiler path to compute shaders on programmable hardware

- The model will always run, even if operation are not yet fully optimized

Advantages of SkriptND Flexibility

https://creativecommons.org/licenses/by/4.0/
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operator matmul {

@input {

A: real[m,k];

B: real[k,n];

}

@output {

C: real[m,n];

}

@lower {

C[i,j] = 0.0,

i < m, j < n;

C[i,j] += A[i,l] * B[l,j],

i < m, j < n, l < k;

}

}

• Einsum-like notation independent of HW details

• Does not require low level coding expertise to write

• Allows optimization to target HW

SkriptND Operator and Graph Definition Example

graph AlexNet {

@input {

input: real[1,3,224,224];

}

@output {

output: real[1,1000];

}

@variable {

kernel1: real[64, 3, 11, 11];

bias1: real[64];

kernel2: real[192, 64, 5, 5];

bias2: real[192];

kernel3: real[384, 192, 3, 3];

bias3: real[384];

...

kernel7: real[4096, 4096];

bias7: real[4096];

kernel8: real[classes, 4096];

bias8: real[classes];

}

@compose {

conv1 = nn.conv{padding=0, stride=4}(input, kernel1, bias1);

relu1 = nn.relu(conv1);

pool1 = nn.max_pool{padding=0, size=3, stride=2}(relu1);

conv2 = nn.conv{padding=2}(pool1, kernel2, bias2);

relu2 = nn.relu(conv2);

pool2 = nn.max_pool{padding=0, size=3, stride=2}(relu2);

conv3 = nn.conv{padding=1}(pool2, kernel3, bias3);

relu3 = nn.relu(conv3);

...

relu6 = nn.relu(conv6);

flat1 = layout.flatten{axis=1}(relu6);

conv7 = nn.linear(flat1, kernel7, bias7);

relu7 = nn.relu(conv7);

conv8 = nn.linear(relu7, kernel8, bias8);

output = nn.softmax(conv8);

}

}

https://creativecommons.org/licenses/by/4.0/
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NNEF 2.0 and SkriptND Tooling

NNEF 2.0

Tools

NNEF 2.0

Specification

• NNEF 2.0 specification preview is available on GitHub

• NNEF 2.0 Tools is a tooling ecosystem around NNEF 2.0 to get you started

• Network Conversion
- Importers from ONNX, TensorFlow, and TFLite

- Exporters to ONNX and TensorFlow

• Network Execution
- C++ code generator with parser, frontend and runtime

- TVM based sample compiler which can compile NNEF to Vulkan, CUDA and CPU code.

• Give it a try!

https://creativecommons.org/licenses/by/4.0/
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• SkriptND could be embedded into SPIR-V graphs

- Custom operators become part of the graph

- Drivers execute hardware targeted compilation for efficiency

• Incremental support to build ecosystem

- Implement SkriptND as a Layered Vulkan Extension

- IHVs can incrementally increase levels of optimization support over time

API Driver

ML Framework/Compiler

SPIR-V with Graphs 

and SkriptND for programmed 

operators

NPUsGPUs

Industry-Driven Open-Source Project
Runtime includes SkriptND to lower graph and operator 

computation to any available driver capabilities

GPU Compute

GPU Compute +

ML Intrinsics

GPU Compute +

ML Intrinsics +

Graph 

Optimizations

Ingestion of SkriptND 

programmed operators and 

lowering to available driver 

support  

Performance increases as 

hardware drivers support 

increased intrinsic and graph 

operations via SPIR-V

Should SkriptND be embedded into SPIR-V?

https://creativecommons.org/licenses/by/4.0/
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Simplifying Cross-

Platform Machine 

Learning 

Acceleration

SkriptND
• Operator programming

• Lowering to optimized hardware and shaders

• Forward compatibility for incremental rollout

SPIR-V Graphs
• Communicate graph information to driver

• Enables driver-level graph optimizations

• Unified driver with GPU and NPU support

Compute Shaders
• Add ML-needed data types and 

matrix/Tensor intrinsic operations 

to HAL acceleration APIs

• Open-source run-time enables 

incremental rollout

Khronos proposes simplifying the industry’s 

backend acceleration of ML stacks

We welcome your feedback on whether this meets 

real-world industry needs! 

Your Feedback is Welcome!
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