
© The Khronos® Group Inc. 2025 - Page 1This work is licensed under a Creative Commons Attribution 4.0 International License

Physical AI

Current Status of AI-related Standardization in the
Khronos Group

Markus Tavenrath
Principal Engineer Developer Technology, NVIDIA

ML Council Chair, Khronos

© The Khronos® Group Inc. 2025 - Page 2This work is licensed under a Creative Commons Attribution 4.0 International License
Creative Commons License

-2 -

Current Status of AI-related Standardization in the Khronos Group

Abstract

This session introduces the ongoing efforts to standardise

machine learning acceleration within Khronos. As machine

learning technologies evolve, the industry faces challenges

such as fragmented solutions, duplicated development effort,

and slow adoption of new hardware features. The presentation

sets the stage for a discussion on how open standards can

help address these issues, enabling more efficient,

interoperable, and future-proof deployment of machine learning

across diverse platforms.

This presentation examines the current status and future direction of AI-related standardisation within Khronos.

Physical AI

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2025 - Page 3This work is licensed under a Creative Commons Attribution 4.0 International License
Creative Commons License

Non-profit Standards Consortium

creating open, royalty-free

standards

Focused on acceleration APIs

and file formats for 3D, XR, AI,

vision, and parallel compute

Membership open to any

organization

Founded in 2000

~ 150 Members |~ 40% US, 30% Europe, 30% Asia

ISO/IEC JTC 1 PAS Submitter

Khronos Connects Software to Silicon

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2025 - Page 4This work is licensed under a Creative Commons Attribution 4.0 International License
Creative Commons License

Open-Source Frameworks Compilers, Runtimes and Libraries Acceleration APIs & SDKs

IREE

Tencent ncnn

DPC++/SYCL

GPU Delegates

File Formats

Custom Kernels

Direct Integration

Lite

Baidu

(ExecuTorch)

Open

Standard

Compute

APIs

The complex ML landscape of compiler,

runtimes and libraries results from the

search for acceleration flexibility,

customization, and optimization

Proprietary

Compute

APIs

Proprietary

Neural

Network

Acceleration

APIsQNN

ARM NN SDK

Machine Learning Acceleration Complexity

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2025 - Page 5This work is licensed under a Creative Commons Attribution 4.0 International License
Creative Commons License

Khronos interviewed key decision-makers 1-1 across the entire ML stack
AI Model Experts | Platforms | Hardware Vendors | AI Compilers | Tools Vendors | Standards

Goal was to understand

1) Real-world ML acceleration pain points facing hardware and software vendors

2) How can standards bodies, like Khronos, help reduce ML ecosystem complexity

Key result - one common problem

Launching AI products & features requires

too much manual expert work!

Up to 85% of ML deployment efforts is the manual expert work

needed to develop and optimize backend ML acceleration

Khronos ML Market Research

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2025 - Page 6This work is licensed under a Creative Commons Attribution 4.0 International License
Creative Commons License

Multiplied porting and support costs

IHVs must integrate with every framework

Frameworks × # Accelerators × # IHVs

ISVs must support multiple backends

• Increased software complexity and support burden

• Slow adoption of new hardware features

• Fragmented platform support

Lack of Performance Portability
Speed-of-light performance requires expert

interventions for each backend

• Model porting & optimization

• Custom operators

• Graph rewriting & scheduling

CompilersCompilersCompilers

ML

Frameworks
ML

Frameworks
ML

Frameworks

CompilersCompilersRuntimes

CompilersCompilersLibraries

CompilersCompilersAcceleration

APIs

CompilersCompilersAcceleration

SDKS

Multiple compiler, runtimes

and libraries seeking

optimal acceleration
Multiple acceleration

backends for platform and

vendor differentiationMany frameworks and

models to enable diversity

of platforms and use cases

ML acceleration pain points

are slowing innovation!

• Expertise bottleneck

• Duplicated effort

= Slow adoption of new acceleration

opportunities …

… end users can’t run the models they

need on the hardware they want!

ML Ecosystem Acceleration Inefficiency

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2025 - Page 7This work is licensed under a Creative Commons Attribution 4.0 International License
Creative Commons License

● Open cross-vendor APIs benefit software AND hardware vendors
- Software vendors have reduced costs and broder market reach

- Hardware vendors have access to a broader software ecosystem

- Robust API design and support with input and investment from multiple companies

● BUT acceleration standards must be designed with care
- Not too soon - only standardize interoperability that is proven and stable

- Extensible to accommodate technology advances

Software compiler/library/runtimeSoftware compiler/library/runtime

Hardware

Accelerator

Hardware

Accelerator

Hardware

Accelerator

Proprietary API Proprietary APIProprietary API

Hardware

Accelerator

Hardware

Accelerator

Hardware

Accelerator

Software compiler/library/runtime

Open, cross-vendor API

Software compilers/libraries/runtimes

Custom API per hardware vendor

increases software porting and support costs

Cross-vendor API streamlines software

development and widens market reach

Can Open Interoperability Standards Help?

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2025 - Page 8This work is licensed under a Creative Commons Attribution 4.0 International License
Creative Commons License

An effective cross-platform standard for ML acceleration

could reduce the number of needed backends

Can we create cross-platform standards that address the

operator, graph-in-IR and NPU deployment pain points?

CompilersCompilersCompilers

ML

Frameworks
ML

Frameworks
ML

Frameworks

CompilersCompilersRuntimes

CompilersCompilersLibraries

CompilersCompilersAcceleration

APIs

CompilersCompilersAcceleration

SDKS

Sophisticated lowering ML compilers are the most promising route to performance portability

- but there are two backend issues that need solving

1. Many compiler stacks define custom operators to try to gain access to efficient operations
BUT

Resulting operator proliferation means that overwhelmed hardware vendors

can’t deploy effective operator acceleration fast enough

2. Open-Standard Intermediate Representations (IRs) don’t carry operator (graph) information
WHICH MEANS

• Device driver optimization opportunities are limited

• Can’t lower GPU-centric IR code to NPUs

Hardware Vendors Could Do More for ML?

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2025 - Page 9This work is licensed under a Creative Commons Attribution 4.0 International License
Creative Commons License

‘Default’ ML acceleration on GPUs is to run compute shaders
ML Workloads dominated by Matrix-Matrix Multiply, Matrix Vector Multiply and

Convolutions (which can also be expressed as matrix multiplies)

Performance

Bottlenecks

Memory Capacity

Memory size

Bandwidth per memory pin

Quantization

Reduce bit precision per weight

ML Data Types

Int8 | Int16

Float8 | float16

2-4x Less Memory Load

Compute Throughput

Instructions per clock are limited

Max clock is limited

Parallel Operations

Do more work per instruction

Cooperative Matrix Operations

Thread group cooperates on highly

parallel matrix multiplies

4x+ Speed Increase

Solutions

Extensions

Vulkan (and OpenCL) are continuing to expand data types

and intrinsic operations to speed ML operations

ML Acceleration with Compute Shaders

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2025 - Page 10This work is licensed under a Creative Commons Attribution 4.0 International License
Creative Commons License

• OpenCL has been traditionally widely used in mobile and embedded markets

• Vulkan is becoming increasingly used across all markets

General Frameworks Type Khronos APIs

Tinygrad Framework

Intel OpenVINO Runtime

Apache TVM Compiler

Meta Glow Compiler

SYCL / DPC++ / OneAPI Compiler

GGML Runtime

IREE Compiler/Runtime

AI Inc. Ailia SDK SDK

Mobile / Embedded Frameworks Type Khronos APIs

Cadence Xtensa Neural Network Compiler (XNNC) Compiler

CEVA Deep Neural Network compiler (CDNN) Compiler

Synopsys MetaWare EV Runtime

VeriSilicon Acuity Runtime

Texas Instruments DL Library (TIDL) Library

Arm Compute Library Library

Xilinx Vitis AI SDK

QNN: Qualcomm Neural Network SDK SDK

Google LiteRT Runtime

Alibaba MNN Runtime

Xiaomi Mace Runtime

Baidu Paddle Paddle Lite Runtime

ExecuTorch Compiler/Runtime

Note: frameworks may have additional supported backends

ML Adoption of Khronos Open Standards

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2025 - Page 11This work is licensed under a Creative Commons Attribution 4.0 International License
Creative Commons License

• SPIR-V is the IR for Vulkan, OpenCL and SYCL
- Designed to support graphics and compute use cases

- Simple binary format, easy and fast to parse and analyze

- Decouples compute and shading language from the API

• Industry support is widening beyond Khronos APIs
- Official LLVM backend since LLVM 20

- MLIR dialect available

- Adopted for DirectX Shader Model 7

• Easily extendible to add new features
- Expose innovative features in your hardware

- Enable the industry to widely adopt them

• Enables forward compatibility
- New tools generate bytecode readable by older drivers

- Compiler update does need a driver update

• Extensive SPIR-V open-source tooling
- Read, write, validate and transform SPIR-V

Shader Model 7

MLIR

Slang

LLVM

DXC

SPIR-V

Cross

HLSL GLSL

glslang

Note: there are SPIR-V

dialects with minor

differences for different APIs

Khronos SPIR-V Intermediate Representation

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2025 - Page 12This work is licensed under a Creative Commons Attribution 4.0 International License
Creative Commons License

API Driver

• Arm vendor extensions add graphs and tensors to SPIR-V

- Arm’s TOSA is the initial operator set

- Extensible to any other operator set

- But no custom kernel support

• Complete neural network is sent to the driver as one SPIR-V blob

- Driver can run a full graph optimizer on the network to optimize execution

• This solves multiple identified pain points!

Offload operators to

special hardware, e.g.

NPUs

ML Framework/Compiler

Drivers have full graph

information for

optimization
SPIR-V with Graphs

NPUsGPUs

Drivers have the most detailed architectural

knowledge of available processor resources

Choose optimal Kernels
Choose optimal tiling for

best cache efficiency

Adding Graphs to SPIR-V

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2025 - Page 13This work is licensed under a Creative Commons Attribution 4.0 International License
Creative Commons License

• How to handle custom operators in the SPIR-V graph?
- Custom operators usually are defined through compute kernels

- The Arm SPIR-V graph extension does NOT support compute kernels as graph nodes

• We are seeking industry feedback - what are your custom operator requirements?
- Our research says 20-30% of typical pipelines are custom operators

- Custom nodes distributed equally in the graph?

- Just used for preprocessing and postprocessing?

- Large single big operator in the middle of a graph?

• If it’s preprocessing or post processing the current graph extension works fine

- Unless data transfer or data layout conversion is required

• For everything else
- Do you consider synchronization as problem?

- Do you think it’s valuable to have compute kernels in the graph?

- What kind of programming model do you expect?

Reducing Need for Custom Operators

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2025 - Page 14This work is licensed under a Creative Commons Attribution 4.0 International License
Creative Commons License

• NNEF is a Khronos open standard file format for describing neural networks
- Two key aspects: neural structure and network data

- Primary focus today is neural structure

• NNEF 2.0 defines the SkriptND domain specific language
- Shape inference

- Runtime computation of tensor operators called “primitives”

- Compounds of primitives - and other compounds

- Control flow constructs (branching / looping at the graph level) for dynamic models

- Full neural network graphs consisting of primitives and compounds

• Networks defined with SkriptND are fully self-contained
- New operators can be defined by exporter tools or the developer as needed

Compound

Compound Compound

PrimitivePrimitivePrimitivePrimitivePrimitivePrimitivePrimitivePrimitive

Compound

CompoundGraph

SkriptND primitive and

compound operators

NNEF 2.0 and SkriptND

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2025 - Page 15This work is licensed under a Creative Commons Attribution 4.0 International License
Creative Commons License

• SkriptND enables flexible graph construction
- "Mixing and matching" optimization levels

• Handling Tensor Primitives (e.g., conv, add)
- Optimized Path: Map the primitive to a specialized hardware unit or compute kernel

- Fallback Path: Directly compile the provided SkriptND definition into vanilla compute shaders

• Handling Compounds (e.g., conv_bn_relu)
- Optimized Path: Support the compound directly as a single "fused" operation

- Fallback Path: "Lower" the compound, breaking it down into its constituent primitives

• Implementers can choose what Primitives and Compounds to optimize
- Using custom hardware or compute kernels

- The graph will always execute even if everything is compiled into standard computer shaders

• Guaranteed Forward Compatibility
- New primitives always have a compiler path to compute shaders on programmable hardware

- The model will always run, even if operation are not yet fully optimized

Advantages of SkriptND Flexibility

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2025 - Page 16This work is licensed under a Creative Commons Attribution 4.0 International License
Creative Commons License

operator matmul {

@input {

A: real[m,k];

B: real[k,n];

}

@output {

C: real[m,n];

}

@lower {

C[i,j] = 0.0,

i < m, j < n;

C[i,j] += A[i,l] * B[l,j],

i < m, j < n, l < k;

}

}

• Einsum-like notation independent of HW details

• Does not require low level coding expertise to write

• Allows optimization to target HW

SkriptND Operator and Graph Definition Example

graph AlexNet {

@input {

input: real[1,3,224,224];

}

@output {

output: real[1,1000];

}

@variable {

kernel1: real[64, 3, 11, 11];

bias1: real[64];

kernel2: real[192, 64, 5, 5];

bias2: real[192];

kernel3: real[384, 192, 3, 3];

bias3: real[384];

...

kernel7: real[4096, 4096];

bias7: real[4096];

kernel8: real[classes, 4096];

bias8: real[classes];

}

@compose {

conv1 = nn.conv{padding=0, stride=4}(input, kernel1, bias1);

relu1 = nn.relu(conv1);

pool1 = nn.max_pool{padding=0, size=3, stride=2}(relu1);

conv2 = nn.conv{padding=2}(pool1, kernel2, bias2);

relu2 = nn.relu(conv2);

pool2 = nn.max_pool{padding=0, size=3, stride=2}(relu2);

conv3 = nn.conv{padding=1}(pool2, kernel3, bias3);

relu3 = nn.relu(conv3);

...

relu6 = nn.relu(conv6);

flat1 = layout.flatten{axis=1}(relu6);

conv7 = nn.linear(flat1, kernel7, bias7);

relu7 = nn.relu(conv7);

conv8 = nn.linear(relu7, kernel8, bias8);

output = nn.softmax(conv8);

}

}

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2025 - Page 17This work is licensed under a Creative Commons Attribution 4.0 International License
Creative Commons License

NNEF 2.0 and SkriptND Tooling

NNEF 2.0

Tools

NNEF 2.0

Specification

• NNEF 2.0 specification preview is available on GitHub

• NNEF 2.0 Tools is a tooling ecosystem around NNEF 2.0 to get you started

• Network Conversion
- Importers from ONNX, TensorFlow, and TFLite

- Exporters to ONNX and TensorFlow

• Network Execution
- C++ code generator with parser, frontend and runtime

- TVM based sample compiler which can compile NNEF to Vulkan, CUDA and CPU code.

• Give it a try!

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2025 - Page 18This work is licensed under a Creative Commons Attribution 4.0 International License
Creative Commons License

• SkriptND could be embedded into SPIR-V graphs

- Custom operators become part of the graph

- Drivers execute hardware targeted compilation for efficiency

• Incremental support to build ecosystem

- Implement SkriptND as a Layered Vulkan Extension

- IHVs can incrementally increase levels of optimization support over time

API Driver

ML Framework/Compiler

SPIR-V with Graphs

and SkriptND for programmed

operators

NPUsGPUs

Industry-Driven Open-Source Project
Runtime includes SkriptND to lower graph and operator

computation to any available driver capabilities

GPU Compute

GPU Compute +

ML Intrinsics

GPU Compute +

ML Intrinsics +

Graph

Optimizations

Ingestion of SkriptND

programmed operators and

lowering to available driver

support

Performance increases as

hardware drivers support

increased intrinsic and graph

operations via SPIR-V

Should SkriptND be embedded into SPIR-V?

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2025 - Page 19This work is licensed under a Creative Commons Attribution 4.0 International License
Creative Commons License

Simplifying Cross-

Platform Machine

Learning

Acceleration

SkriptND
• Operator programming

• Lowering to optimized hardware and shaders

• Forward compatibility for incremental rollout

SPIR-V Graphs
• Communicate graph information to driver

• Enables driver-level graph optimizations

• Unified driver with GPU and NPU support

Compute Shaders
• Add ML-needed data types and

matrix/Tensor intrinsic operations

to HAL acceleration APIs

• Open-source run-time enables

incremental rollout

Khronos proposes simplifying the industry’s

backend acceleration of ML stacks

We welcome your feedback on whether this meets

real-world industry needs!

Your Feedback is Welcome!

https://creativecommons.org/licenses/by/4.0/

	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19

