

Global ICT Standards Conference 2025

Physical Al

KHRONOS

Current Status of Al-related Standardization in the **Khronos Group**

Markus Tavenrath Principal Engineer Developer Technology, NVIDIA ML Council Chair, Khronos

> **ICT Standards and Intellectual Property:** Al for All

Abstract

This presentation examines the current status and future direction of Al-related standardisation within Khronos.

Physical Al

This session introduces the ongoing efforts to standardise machine learning acceleration within Khronos. As machine learning technologies evolve, the industry faces challenges such as fragmented solutions, duplicated development effort, and slow adoption of new hardware features. The presentation sets the stage for a discussion on how open standards can help address these issues, enabling more efficient, interoperable, and future-proof deployment of machine learning across diverse platforms.

Khronos Connects Software to Silicon

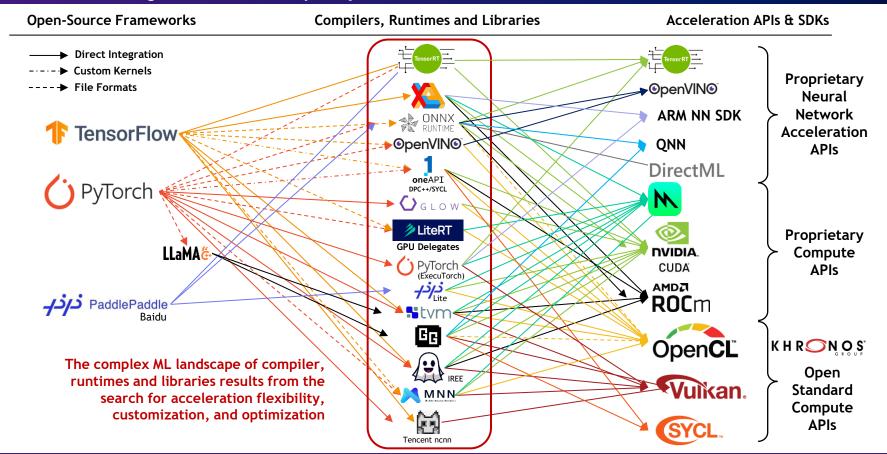
Non-profit Standards Consortium creating open, royalty-free standards

Focused on acceleration APIs and file formats for 3D, XR, AI, vision, and parallel compute

Membership open to any organization

Founded in 2000
~ 150 Members | ~ 40% US, 30% Europe, 30% Asia
ISO/IEC JTC 1 PAS Submitter

Machine Learning Acceleration Complexity



Khronos interviewed key decision-makers 1-1 across the entire ML stack

Al Model Experts | Platforms | Hardware Vendors | Al Compilers | Tools Vendors | Standards

Goal was to understand

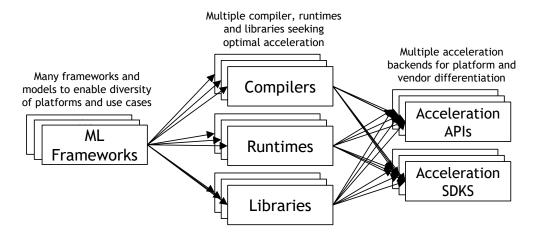
- 1) Real-world ML acceleration pain points facing hardware and software vendors
- 2) How can standards bodies, like Khronos, help reduce ML ecosystem complexity

Key result - one common problem

Launching AI products & features requires too much manual expert work!

Up to 85% of ML deployment efforts is the manual expert work needed to develop and optimize backend ML acceleration

ML Ecosystem Acceleration Inefficiency



Multiplied porting and support costs

Frameworks × # Accelerators × # IHVs

ISVs must support multiple backends

- Increased software complexity and support burden
 - Slow adoption of new hardware features
 - Fragmented platform support

Lack of Performance Portability

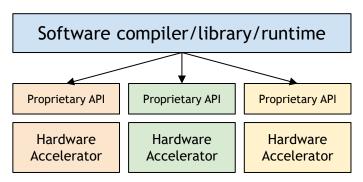
Speed-of-light performance requires expert interventions for each backend

- Model porting & optimization
 - Custom operators
- Graph rewriting & scheduling

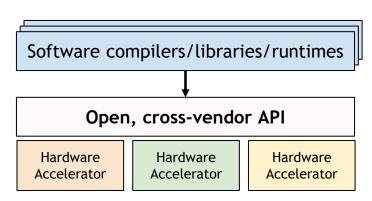
ML acceleration pain points are slowing innovation!

- Expertise bottleneck
 - Duplicated effort
- = Slow adoption of new acceleration opportunities ...
- ... end users can't run the models they need on the hardware they want!

- Open cross-vendor APIs benefit software AND hardware vendors
 - Software vendors have reduced costs and broder market reach
 - Hardware vendors have access to a broader software ecosystem
 - Robust API design and support with input and investment from multiple companies
- BUT acceleration standards must be designed with care
 - Not too soon only standardize interoperability that is **proven** and **stable**
 - Extensible to accommodate technology advances



Custom API per hardware vendor increases software porting and support costs



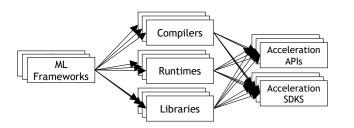
Cross-vendor API streamlines software development and widens market reach

Sophisticated lowering ML compilers are the most promising route to performance portability - but there are two backend issues that need solving

1. Many compiler stacks define custom operators to try to gain access to efficient operations

Resulting operator proliferation means that overwhelmed hardware vendors can't deploy effective operator acceleration fast enough

- 2. Open-Standard Intermediate Representations (IRs) don't carry operator (graph) information which MEANS
 - Device driver optimization opportunities are limited
 - Can't lower GPU-centric IR code to NPUs



An effective cross-platform standard for ML acceleration could reduce the number of needed backends

Can we create cross-platform standards that address the operator, graph-in-IR and NPU deployment pain points?

'Default' ML acceleration on GPUs is to run compute shaders

ML Workloads dominated by Matrix-Matrix Multiply, Matrix Vector Multiply and Convolutions (which can also be expressed as matrix multiplies)

Performance Bottlenecks

Solutions

Memory Capacity

Memory size

Bandwidth per memory pin

Quantization

Reduce bit precision per weight

 \bigcirc

ML Data Types Int8 | Int16

Float8 | float16

2-4x Less Memory Load

 \sum

Compute Throughput

Instructions per clock are limited

Max clock is limited

 $\hat{\Phi}$

Parallel Operations

Do more work per instruction

了

Cooperative Matrix Operations

Thread group cooperates on highly parallel matrix multiplies

J

4x+ Speed Increase

Vulkan (and OpenCL) are continuing to expand data types and intrinsic operations to speed ML operations

- OpenCL has been traditionally widely used in mobile and embedded markets
- Vulkan is becoming increasingly used across all markets

General Frameworks		Туре	Khronos APIs	
Tinygrad	ting	Framework	OpenCL	
Intel OpenVINO	@penVIN@	Runtime	Open C L	
Apache TVM	# tvm	Compiler	Open C L Vulkan.	
Meta Glow	○ G L O W	Compiler	Open C L	
SYCL / DPC++ / OneAPI	SYCL.	Compiler	Open C L	
GGML	GE	Runtime	Open C L Vulkan.	
IREE	æ	Compiler/Runtime	Vulkan.	
Al Inc. Ailia SDK		SDK	Vulkan.	

a 1 | 1 a

Mobile / Embedded Frameworks	Туре	Khronos APIs
Cadence Xtensa Neural Network Compiler (XNNC)	Compiler	OpenCL
CEVA Deep Neural Network compiler (CDNN)	Compiler	Open CL
Synopsys MetaWare EV	Runtime	Open CL
VeriSilicon Acuity Acuity	Runtime	Open C L
Texas Instruments DL Library (TIDL)	Library	Open CL
Arm Compute Library	Library	OpenCL Vuikan.
Xilinx Vitis Al	SDK	Open CL
QNN: Qualcomm Neural Network SDK	SDK	Open C L
Google LiteRT	Runtime	Open CL
Alibaba MNN MNN	Runtime	Open CL Vuikan.
Xiaomi Mace	Runtime	OpenCL Vulkan.
Baidu Paddle Paddle Lite となって	Runtime	Open C L
ExecuTorch OPyTorch	Compiler/Runtime	Vuikan.

Note: frameworks may have additional supported backends

Khronos SPIR-V Intermediate Representation

SPIR-V is the IR for Vulkan, OpenCL and SYCL

- Designed to support graphics and compute use cases
- Simple binary format, easy and fast to parse and analyze
- Decouples compute and shading language from the API

Industry support is widening beyond Khronos APIs

- Official LLVM backend since LLVM 20
- MLIR dialect available
- Adopted for DirectX Shader Model 7

Easily extendible to add new features

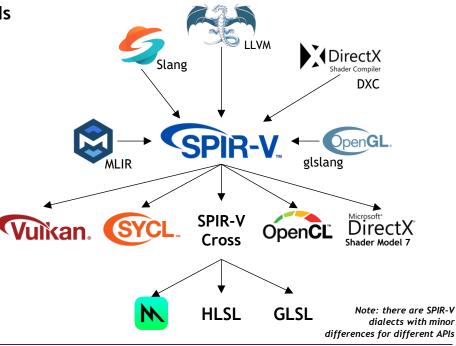
- Expose innovative features in your hardware
- Enable the industry to widely adopt them

Enables forward compatibility

- New tools generate bytecode readable by older drivers
- Compiler update does need a driver update

Extensive SPIR-V open-source tooling

- Read, write, validate and transform SPIR-V



Adding Graphs to SPIR-V

- Arm vendor extensions add graphs and tensors to SPIR-V
 - Arm's TOSA is the initial operator set
 - Extensible to any other operator set
 - But no custom kernel support

- Should Khronos pursue making SPIR-V Graphs a cross-vendor open standard?
- Complete neural network is sent to the driver as one SPIR-V blob
 - Driver can run a full graph optimizer on the network to optimize execution
- This solves multiple identified pain points!

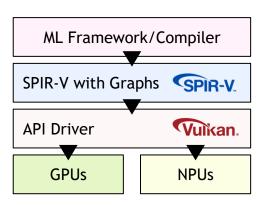
Drivers have full graph information for optimization

Offload operators to special hardware, e.g. NPUs

Choose optimal Kernels

Choose optimal tiling for best cache efficiency

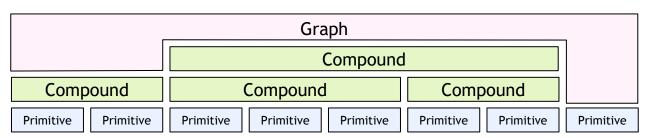
Drivers have the most detailed architectural knowledge of available processor resources



Reducing Need for Custom Operators

- How to handle custom operators in the SPIR-V graph?
 - Custom operators usually are defined through compute kernels
 - The Arm SPIR-V graph extension does NOT support compute kernels as graph nodes
- We are seeking industry feedback what are your custom operator requirements?
 - Our research says 20-30% of typical pipelines are custom operators
 - Custom nodes distributed equally in the graph?
 - Just used for preprocessing and postprocessing?
 - Large single big operator in the middle of a graph?
- If it's preprocessing or post processing the current graph extension works fine
 - Unless data transfer or data layout conversion is required
- For everything else
 - Do you consider synchronization as problem?
 - Do you think it's valuable to have compute kernels in the graph?
 - What kind of programming model do you expect?

- NNEF is a Khronos open standard file format for describing neural networks
 - Two key aspects: neural structure and network data
 - Primary focus today is neural structure
- NNEF 2.0 defines the SkriptND domain specific language
 - Shape inference
 - Runtime computation of tensor operators called "primitives"
 - Compounds of primitives and other compounds
 - Control flow constructs (branching / looping at the graph level) for dynamic models
 - Full neural network graphs consisting of primitives and compounds
- Networks defined with SkriptND are fully self-contained
 - New operators can be defined by exporter tools or the developer as needed



SkriptND primitive and compound operators

Advantages of SkriptND Flexibility

SkriptND enables flexible graph construction

- "Mixing and matching" optimization levels

Handling Tensor Primitives (e.g., conv, add)

- Optimized Path: Map the primitive to a specialized hardware unit or compute kernel
- Fallback Path: Directly compile the provided SkriptND definition into vanilla compute shaders

Handling Compounds (e.g., conv_bn_relu)

- Optimized Path: Support the compound directly as a single "fused" operation
- Fallback Path: "Lower" the compound, breaking it down into its constituent primitives

Implementers can choose what Primitives and Compounds to optimize

- Using custom hardware or compute kernels
- The graph will always execute even if everything is compiled into standard computer shaders

Guaranteed Forward Compatibility

- New primitives always have a compiler path to compute shaders on programmable hardware
- The model will always run, even if operation are not yet fully optimized

SkriptND Operator and Graph Definition Example


```
operator matmul {
             @input {
                           A: real[m,k];
                           B: real[k,n];
             @output {
                           C: real[m,n];
             @lower {
                           C[i,j] = 0.0,
                                         i < m, j < n;
                           C[i,j] += A[i,l] * B[l,j],
                                         i < m, j < n, 1 < k;
```

- Einsum-like notation independent of HW details
- Does not require low level coding expertise to write
- Allows optimization to target HW

```
graph AlexNet {
    @input {
        input: real[1,3,224,224];
    @output {
        output: real[1,1000];
    @variable {
        kernel1: real[64, 3, 11, 11];
        bias1: real[64];
        kernel2: real[192, 64, 5, 5];
        bias2: real[192];
        kernel3: real[384, 192, 3, 3];
        bias3: real[384];
        kernel7: real[4096, 4096];
        bias7: real[4096];
        kernel8: real[classes, 4096];
        bias8: real[classes];
    @compose {
        conv1 = nn.conv{padding=0, stride=4}(input, kernel1, bias1);
        relu1 = nn.relu(conv1);
        pool1 = nn.max pool{padding=0, size=3, stride=2}(relu1);
        conv2 = nn.conv{padding=2} (pool1, kernel2, bias2);
        relu2 = nn.relu(conv2);
        pool2 = nn.max pool{padding=0, size=3, stride=2}(relu2);
        conv3 = nn.conv{padding=1} (pool2, kernel3, bias3);
        relu3 = nn.relu(conv3);
        relu6 = nn.relu(conv6);
        flat1 = layout.flatten{axis=1}(relu6);
        conv7 = nn.linear(flat1, kernel7, bias7);
        relu7 = nn.relu(conv7);
        conv8 = nn.linear(relu7, kernel8, bias8);
        output = nn.softmax(conv8);
```


- NNEF 2.0 specification preview is available on GitHub
- NNEF 2.0 Tools is a tooling ecosystem around NNEF 2.0 to get you started
- Network Conversion
 - Importers from ONNX, TensorFlow, and TFLite
 - Exporters to ONNX and TensorFlow
- Network Execution
 - C++ code generator with parser, frontend and runtime
 - TVM based sample compiler which can compile NNEF to Vulkan, CUDA and CPU code.
- Give it a try!

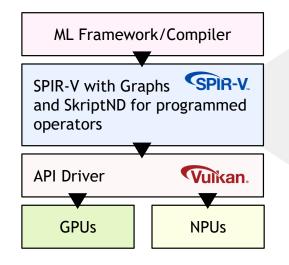
NNEF 2.0 Specification

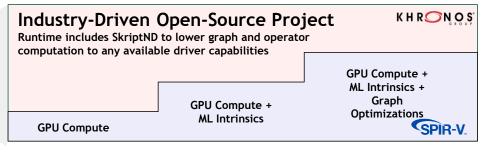
NNEF 2.0 Tools

Should SkriptND be embedded into SPIR-V?

- SkriptND could be embedded into SPIR-V graphs
 - Custom operators become part of the graph
 - Drivers execute hardware targeted compilation for efficiency
- Incremental support to build ecosystem
 - Implement SkriptND as a Layered Vulkan Extension
 - IHVs can incrementally increase levels of optimization support over time

Should Khronos initiate an open source project to enable incremental industry rollout of SkriptND-based operators?





Ingestion of SkriptND programmed operators and lowering to available driver support

Performance increases as hardware drivers support increased intrinsic and graph operations via SPIR-V

Khronos proposes simplifying the industry's backend acceleration of ML stacks
We welcome your feedback on whether this meets real-world industry needs!

SPIR-V Graphs

- Communicate graph information to driver
- Enables driver-level graph optimizations
- Unified driver with GPU and NPU support

Simplifying Cross-Platform Machine Learning Acceleration

SkriptND

- Operator programming
- Lowering to optimized hardware and shaders
- Forward compatibility for incremental rollout

Compute Shaders

- Add ML-needed data types and matrix/Tensor intrinsic operations to HAL acceleration APIs
- Open-source run-time enables incremental rollout

